Densities and Isobaric Vapor-Liquid Equilibria of Butyl Esters (Methanoate to Butanoate) with Ethanol at 101.32 kPa

Eduardo González and Juan Ortega*

Laboratorio de Termodinámica y Fisicoquímica, Escuela Superior de Ingenieros Industriales, University of Las Palmas de Gran Canaria, 35071 Las Palmas de Gran Canaria, Spain

Vapor-liquid equilibrium and densities at 101.32 kPa have been determined for the binary systems formed by four butyl esters (from methanoate to butanoate) with ethanol. The four systems exhibit positive deviations from ideal behavior, and all data (p-T-x-y) were found to be thermodynamically consistent. The activity coefficients and the dimensionless function $G^{\rm E}/RT$ of the solution were correlated with its concentration by different equations. An azeotrope was found in the mixture butyl methanoate (1) + ethanol (2) at T = 350.9 K and $x_1 = y_1 = 0.088$. The group contribution models ASOG and modified UNIFAC gave fair predictions.

Study

Introduction

Our research team has been conducting a program of experimental measurements for binary mixtures containing methyl esters (Ortega et al., 1990), ethyl esters (Ortega et al., 1986), and propyl esters (Ortega and Galván, 1994) under a research project designed to study the vaporliquid equilibria (VLE) of binary mixtures of alkyl esters and alcohols. In the framework of that study, the present contribution gives experimental VLE results for binary mixtures consisting of butyl esters (from methanoate to butanoate) and ethanol at a constant pressure of 101.32 kPa. The literature consulted has disclosed values for the binary mixture butyl ethanoate + ethanol [Beregovykh, V. V.; Timofeev, V. S.; Lukyanova, R. N. Uch. Zap. Mosk. Inst. Tonkoi Khim. Tekhnol. 1971, 1, 38. Shono, H.; Kanazawa, N. Kogyo Kagaku Zasshi 1969, 72, 815 (see Gmehling et al. (1988) and Ortega et al. (1987))]. Now in our laboratory new equipment exists that gives more precise VLE data; therefore, for that system new measurements were made in oder to present a comprehensive analysis of mixtures of the first butyl esters and normal and isomeric alcohols.

The present paper also considers the applicability of group contribution methods to such mixtures, in particular the ASOG model (Tochigi et al., 1990) and three versions of the UNIFAC model, the original model put forth by Fredenslund et al. (1975) and the modified versions put forth by Larsen et al. (1986) and by Weidlich and Gmehling (1987).

Experimental Section

Chemicals. All the components used in this study (butyl methanoate, 97 + mol %, and propanoate, 99 + mol%, from Aldrich and butyl ethanoate and butanoate, >99 mol \%, and ethanol, >99.8 mol \%, from Fluka) were of the highest commercial grade, and all were degassed using ultrasound and dried on molecular sieves (type 3Å from Fluka) before use. The main physical properties were determined for each of the components experimentally, and results are shown together with literature values in Table

	<i>Q</i> (298 (kg	.15 K)/ m ⁻³)	n(D, 2)	298.15 K)	Ть/К		
	exptl	lit.	exptl	lit.	exptl	lit.	
butyl	887 64	886 Qa.b	1 3979	1 38710.0	370 30	270 254	

Table 1. Densities, ρ , Refractive Indices, n(D), and

Normal Boiling Points, T_b , of the Chemicals Used in This

butyl methanoate	887.64	886.9 ^{a,b}	1.3872	$1.3874^{a,b}$	379.3 0	$379.25^{a,b}$
butyl ethanoate	875.89	876.36 ^a 876.6 ^b	1.3 92 0	$1.3918^{a,b}$	399.26	399.21ª 399.15 ^b
butyl propanoate	871.12	871.4^{b}	1.3989	1.4000 ^b	418.26	419.75 ^b
butyl butanoate	864.67	866.4 ^b	1.4040	1.4029^{b}	438.15	438.15^{b}
ethanol	785.38	784.93 ^a 785.09 ^b	1.3595	1.35 94 1ª,b	351.45	351. 44 ^{a,b}

^a Riddick et al. (1986). ^b TRC (1993).

1. There was an unexplained discrepancy in the values of n(D,298.15 K) and $T_{b,i}$ for butyl propanoate.

Equipment and Procedure. The ebulliometer employed in the present study was small ($\approx 60 \text{ cm}^3$), and the two phases were refluxed. A detailed description of the equipment and operating methods employed has already been published elsewhere (Ortega et al., 1986; Ortega and Susial, 1991).

The composition of the vapor and liquid phases was calculated indirectly from density, ρ , values using an Anton Parr Model DMA-55 densimeter calibrated using water and *n*-nonane (Ortega et al., 1985) to a precision of ± 0.02 kgm⁻³. The phase compositions were established from the respective correlations for $V^{\rm E}$ on x, x being the butyl ester concentration. The values obtained did not differ significantly from the values based on correlations of the type $\rho = \rho(x)$.

Experimental Results

Densities. The excess volumes for each binary system (butyl ester (1) + ethanol (2)) were calculated from measured densities, at known concentrations at 298.15 K. The precision of the estimates was $\pm 10^{-4}$ for mole fraction, ± 0.02 K for temperature measurements, and $\pm 2 \times 10^{-9}$ m³·mol⁻¹ for V^E. Table 2 presents the density and V^E values. The experimental excess volumes were correlated

0021-9568/95/1740-1178\$09.00/0 © 1995 American Chemical Society

_

Table 2.	Densities	and Excess	Volumes	at 298.15	K for
Butyl Est	ters $(1) + \mathbf{E}$	thanol (2)			

Table 4. Experimental Vapor Pressures, p°_{i} , of Butyl Esters as a Function of Temperature, T

		$10^{9}V^{\rm E}/$			$10^{9}V^{E}/$
x_1	$\varrho/(kg m^{-3})$	$(m^3 \cdot mol^{-1})$	x_1	$\varrho/(kg m^{-3})$	$(m^{3}mol^{-1})$
	Butyl	Methanoat	e(1) + Et	hanol (2)	
0.0242	790.61	-16	0.5213	854.50	65
0.0716	799.35	-22	0.5536	857.31	66
0.1043	804.56	7	0.6196	862.70	69
0.1426	810.53	18	0.7615	873.06	63
0.2076	819.94	30	0.8284	877.43	57
0.2724	828.41	39	0.8931	881.41	45
0.3555	838.11	52	0.9431	884.40	25
0.4740	850.18	63			
	Buty	l Ethanoate	(1) + Et	nanol (2)	
0.0343	791.89	17	0.4542	843.35	123
0.0720	798.56	26	0.5118	847.89	130
0.1128	805.03	46	0.5693	852.05	135
0.1537	810.97	65	0.6861	859.63	130
0.2078	818.20	79	0.7607	863.99	112
0.2639	824.94	91	0.8590	869.13	89
0.3043	829.38	98	0.9446	873.31	43
0.3432	833.32	109			
	Butv	l Propanoat	e(1) + Et	hanol (2)	
0.0511	795.27	20	0.4511	842.39	110
0.1031	804.21	34	0.4801	844.55	112
0.1464	810.71	50	0.5777	851.07	114
0.1872	816.25	62	0.6921	857.55	111
0.2468	823.51	74	0.7826	862.00	100
0.3033	829.51	87	0.8284	864.07	90
0.3481	833.82	94	0.9295	868.39	40
0.4023	838.52	104			
	Buty	l Butanoate	e(1) + Et	hanol (2)	
0.0593	796.87	26	0.4671	840.91	126
0.1087	805.02	49	0.5948	848.37	133
0.1603	812.37	67	0.6795	852.51	129
0.2055	818.03	77	0.7108	853.90	128
0.2603	824.00	93	0.7482	855.51	120
0.3102	828.81	104	0.8456	859.33	94
0.3504	832.29	112	0.8938	861.07	74
0.3961	835.93	116	0.9265	862.27	44
Table 3	. Coeffici	ents k and	A _i in Eq	1 and Star	ndard

Deviations, $s(V^{E})$

mixture	k	A_0	A_1	A_2	A_3	$10^{9}s(V^{E})/(m^{3}\cdot mol^{-1})$
$\overline{\frac{butyl methanoate (1)}{+ ethanol (2)}}$	0.23	-1449	7554	-11514	5900	4
butyl ethanoate (1) + ethanol (2)	1.44	472	-96	503		3
butyl propanoate (1) + ethanol (2)	1.21	398	-56	398		2
butyl butanoate (1) + ethanol (2)	0.89	537	-396	684		3

by means of the equation

$$10^{9} V^{E} / (m^{3} \cdot mol^{-1}) = x_{1} x_{2} \sum A_{i} (x_{1} / [x_{1} + kx_{2})])^{i}$$
(1)

The values of the coefficients A_i and k were calculated using the method of least squares, and the corresponding coefficient values and standard deviations, $s(V^E)$, for each system are given in Table 3. The only V^E values for these systems were those published in earlier work carried out in this same series, for butyl methanoate + ethanol (Ortega, 1985) and butyl ethanoate + ethanol (Ortega et al., 1985). With respect to the curves presented in this paper the differences in V^E were minimal, less than 4×10^{-9} m³·mol⁻¹ for the two cases.

Vapor Pressures. Vapor pressures for pure liquids are required in the treatment of VLE data, with a bearing both on the activity coefficients and on the thermodynamic validation of the mixture results. It was therefore decided to make new measurements of the vapor pressure for each

overb ac			per avar e,	-	
<i>T</i> /K	p°1/kPa	T/K	p°1/kPa	T/K	p°1/kPa
		Butyl Me	ethanoate		
362.88	59.04	373.77	84.88	383.65	115.65
363.53	60.43	374.82	87.75	384.24	117.85
364.45	62.30	375 56	90.02	385 27	121 58
265 22	64.95	276 51	02 72	385.05	194.07
200.00	04.20	370.01	94.13	360.90	124.07
366.12	65.85	377.17	94.63	386.99	128.16
366.89	67.67	377.93	96.82	387.80	131.31
367.55	69.18	378.91	99.95	388.57	134.07
368.83	72.21	379.67	102.29	389.37	137.60
369 56	73 98	380.49	105.01	389 55	138 19
270 75	76.03	281.20	107.40	390.74	143.00
70.10	10.30	001.20	110.00	200.74	140.00
572.15	00.01	301.99	110.03	392.33	190.10
373.03	82.87	382.73	112.59		
		Butyl E	thanoate		
382.06	60.64	393.63	86.34	402.86	112.56
383.80	64.06	394.43	88.39	403.51	114.65
384 36	65 15	395.26	90.58	404 10	116.43
004.00	66.60	205 20	00.00	404.00	110.40
000.07	00.00	390.69	92.20	404.92	119.21
386.33	69.27	396.69	94.38	405.49	121.07
387.30	71.34	397.46	96.54	406.07	123.08
388.07	73.06	398.34	99.07	406.65	125.27
389.19	75.60	399.09	101.24	407.11	126.74
300.18	77.90	300.82	103 31	407 75	129.02
001.01	77.90	400 40	105.51	400.44	123.02
391.01	79.85	400.42	105.15	408.44	131.44
391.61	81.32	401.13	106.95	409.34	134.64
392.33	83.08	401.90	109.62	410.04	136.98
392.90	84.50	402.38	111.01		
		Butyl Pr	opanoate		
403.00	65.82	414.14	90.86	423.78	118.37
403 77	67.30	414 79	92.62	494 34	120.18
101 51	69.99	115 19	04 19	121.01	121.10
405.04	70.01	416.00	05 CO	405 20	102.20
405.22	70.31	410.02	95.69	420.32	123.30
406.10	72.12	416.71	97.52	425.95	125.23
407.06	74.20	417.43	99.49	426.46	126.95
407.42	74.99	418.05	101.17	427.68	131.16
408.10	76.53	418.48	102.49	428.05	132.49
409.06	78 65	419 15	104 31	428 54	134 27
410.17	81.99	410.75	106 17	120.01	136 10
410.17	01.22	413.10	100.17	423.03	100.15
410.66	82.37	420.26	107.60	429.84	138.81
411.32	83.92	421.01	109.72	430.24	140.36
412.08	85.73	421.88	112.46	430.81	142.45
412.76	87.43	422.19	113.41	431.46	144.86
413.46	89.16	422.94	115.71		
		B11+1-1 D	utanosta		
195 00	71.00		01 50	119 61	116 69
425.00	71.00	404.29	91.02	440.04	110.02
425.93	72.73	434.97	93.26	444.13	118.11
426.66	74.27	435.54	94.68	444.83	120.10
427.42	75.84	436.23	96.35	445.19	121.28
428.05	77.15	437.00	98.30	445.77	123.05
428.96	79.11	437.65	99 94	446.31	124.70
429 50	80 44	438 30	101 65	446 92	126 64
400 17	00.44	400.00	101.00	440.92	120.04
430.17	81.75	438.79	103.10	447.39	128.07
430.71	83.07	439.65	105.42	448.03	130.20
431.25	84.24	440.20	106.94	448.80	132.72
431.99	85.99	440.99	109.12	449.34	134.50
432.53	87 25	441 54	110 70	449 81	136.06
433.08	88 69	442 38	113.01	110.01	100.00
133 67	00.02	1/2 10	115.01		
400.01	30.04	440.17	110.44		

of the butyl esters; more recent measurements of those values were available for ethanol (Ortega et al., 1990). These values appear in Table 4. The experimental values were correlated by means of the Antoine equation using a nonlinear regression procedure. The values of the constants A, B, and C are shown in Table 5 together with the literature values. The deviations, $\delta(p^{\circ}_i)$, calculated by means of the Antoine equation using the constant values from Table 5 and from the literature have been graphically represented in Figures 1–3. For butyl methanoate the mean error was less than 1% with respect to the TRC (1993) values and less than 2% with respect to the values

Table 5. Coefficients A, B, and C of the Antoine Equation,^a Range of Temperature, and Standard Deviations, $s(p^{\circ}_{i})$, from This Work and from the Literature

	Α	В	С	T/K range	s(p° _i)/ kPa	ref
butyl	6.70820	1627.85	33.17	350-400	0.08	this work
methanoate	6.81853	1698.73	25.74	300 - 385	0.42	ь
	6.5277	1533.4	40.2			c, d
butyl	6.44352	1584.05	42.20	350 - 450	0.08	this work
ethanoate	6.25202	1430.42	62.40	330-400	0.04	Ь
	6.151445	1368.05	69.22			с
	6.5000	1596.7	43.85			d
butyl	6.575 9 5	1745.90	36.04	350 - 450	0.07	this work
propanoate	8.60979	2852.58	-23.83	305 - 365	0.08	Ь
butyl	6.13153	1500.71	74.43	400 - 450	0.07	this work
butanoate	7.27661	2309.44	0.00	325 - 435		е
ethanol	7.1130	1513.02	55.15			f

 $^{a}\log(p^{o}/k\text{Pa}) = A - B/[(T/\text{K}) - C]. ^{b}$ Boublick et al. (1973). c Riddick et al. (1986). d TRC (1993). e Gmehling et al. (1988). f Ortega et al. (1990).

Figure 1. Differences, $\delta_p^{\circ}{}_i = p^{\circ}{}_{i,\text{bib}} - p^{\circ}{}_{i,\text{exp}}$, obtained for vapor pressures of butyl methanoate using the Antoine equation and the constants from the literature indicated.

reported by Boublick et al. (1973) over the same temperature range. For butyl ethanoate the mean difference was likewise 1.5% as compared to TRC (1993) values and 1.2% with respect to the curve reported by Boublick et al. (1973) and Riddick et al. (1986). For butyl butanoate the difference between the vapor pressures and those used by Gmehling et al. (1988) was 2%. It was not possible to compare the values for butyl propanoate with those published by Boublick et al. (1973), because the temperature ranges used were different.

Vapor-Liquid Equilibrium Data. Table 6 presents the p, T, x, and y results at (101.32 ± 0.02) kPa for the mixtures considered in this study. The table also lists activity coefficient values for the liquid phase calculated using

$$\gamma_i = (\phi_i y_i p / (x_i \phi^\circ_i p^\circ_i)) \exp[(p^\circ_i - p) v_i^{\rm L} / RT]$$
(2)

The fugacity coefficient, ϕ_i and ϕ_i° , values were calculated using a virial equation truncated at the second term:

$$\phi_i = \exp[(p/RT)(2\sum y_j B_{ij} - \sum y_j y_j B_{ij})] \qquad (3)$$

Figure 2. Differences, $\delta p^{\circ}_{i} = p^{\circ}_{i,bib} - p^{\circ}_{i,exp}$, obtained for vapor pressures of butyl ethanoate using the Antoine equation and the constants from the literature indicated.

Figure 3. Differences, $\delta p^{\circ}_{i} = p^{\circ}_{i,bib} - p^{\circ}_{i,exp}$, obtained for vapor pressures of butyl butanoate, and using the Antoine equation and the constants from the literature indicated.

The second virial coefficients for the pure components and the mixtures were calculated using Tsonopoulos' empirical equation (1974). The molar volume, $v_i^{\rm L}$, and its variation with temperature were estimated using a modified version of Rackett's equation (Spencer and Danner, 1972). The thermodynamic consistency of the data was verified using the point-to-point test of Van Ness et al. (1973) (Fredenslund et al., 1977), calculating the virial coefficients as explained above. All the systems were consistent for the relationship $|\bar{\delta}y_1| < 0.01$ used by the method.

The experimental results were correlated using the following polynomial equation

$$Q = x_1 x_2 \sum A_i (x_1 / (x_1 + k x_2))^i$$
(4)

fitting the values of $Q = y_1 - x_1$ and G^{E}/RT against ester composition, x_1 . An equation similar to the equation similar to the equation proposed by Wisniak and Tamir

Table 6. Experimental VLE Data at 101.32 kPa for Butyl Esters (1) + Ethanol (2)

	-								
T/K	<i>x</i> ₁	y 1	γ1	γ2	T/K	<i>x</i> ₁	y 1	γ1	γ_2
			Buty	l Methanoate	e(1) + Ethanol	l (2)			
351.07	0.0108	0.0185	4.280	0.994	355.52	0.6141	0.3292	1.152	1.476
351.00	0.0422	0.0505	3.008	0.995	356.24	0.6267	0.3379	1.130	1.467
350.97	0.0643	0.0670	2.624	1.002	356.60	0.6437	0.3483	1.120	1.494
351.00	0.0975	0.0945	2 4 3 9	1.007	357 45	0.6903	0.3698	1 077	1 611
351.05	0 1320	0 1171	2.100	1 019	358 55	0.7189	0.3953	1.065	1 638
251.00	0.1020	0.1219	1 797	1.013	261.01	0.7100	0.0500	1.005	1.000
951 14	0.1090	0.1012	1.707	1.073	969.97	0.7050	0.4000	1.020	1,010
301.14	0.2044	0.1400	1.702	1.073	302.27	0.8091	0.4629	1.020	1.009
301.40	0.2749	0.1720	1.000	1.126	364.07	0.8462	0.5286	1.007	1.924
351.57	0.2984	0.1821	1.505	1.146	365.10	0.8603	0.0000	1.006	1.928
352.30	0.3957	0.2235	1.358	1.229	367.82	0.8935	0.6275	1.002	1.935
352.69	0.4343	0.2396	1.308	1.267	369.93	0.9114	0.6733	0.986	1.904
353.53	0.5060	0.2686	1.222	1.352	371.25	0.9232	0.7071	0.980	1.885
353.87	0.5228	0.2795	1.216	1.362	372.57	0.9322	0.7458	0.983	1.775
354.27	0.5435	0.2931	1.210	1.377	375.67	0.9655	0.8498	0.983	1.871
354.85	0.5845	0.3097	1.165	1.446	377.47	0.9764	0.9111	0.987	1.528
			But	vl Ethanoate	(1) + Ethanol	(2)			
352.32	0.0856	0.0492	2.514	0.994	364.12	0.6324	0.2408	1.102	1.294
353.16	0.1437	0.0685	2.022	1.007	365.70	0.6716	0.2622	1.072	1.334
354.21	0.2121	0.0936	1.803	1.025	366.82	0.6963	0.2770	1.052	1.361
355.12	0 2664	0 1091	1 620	1 046	368 25	0 7244	0 2971	1 035	1 391
356 52	0.3/30	0.1310	1 433	1.040	370.52	0.7631	0.3302	1 014	1 430
257 49	0.0405	0.1010	1 969	1 100	379.77	0.7051	0.3502	0.009	1.469
001.44	0.3097	0.1402	1.000	1.109	072.11	0.7907	0.3040	0.990	1.403
308.37	0.4340	0.1608	1.306	1.130	370.04	0.0000	0.4183	0.984	1.497
359.04	0.4626	0.1701	1.267	1.155	378.76	0.8627	0.4671	0.977	1.512
359.76	0.4920	0.1801	1.230	1.177	383.05	0.8987	0.5516	0.972	1.514
360.58	0.5231	0.1912	1.194	1.202	386.12	0.9205	0.6171	0.969	1.505
361.62	0.5589	0.2063	1.163	1.229	389.68	0.9430	0.6998	0.967	1.486
362.32	0.5813	0.2167	1.147	1.247	394.31	0.9703	0.8279	0.975	1.436
362.97	0.6010	0.2254	1.128	1.266					
			But	vl Propanoate	e (1) + Ethanol	(2)			
351 50	0.0137	0.0046	2 820	0.994	367.52	0.5732	0.1493	1.211	1.113
351 63	0.0107	0.0040	2 339	1 011	369.61	0.6114	0 1662	1 175	1 118
950 90	0.0417	0.0105	2.000	1.011	271 25	0.6491	0.1002	1 147	1 1 9 4
350 00	0.0744	0.0155	1.070	1.012	979 16	0.0401	0.1007	1.147	1.104
002.00	0.1037	0.0207	1.970	1.017	373.10	0.0720	0.1340	1.100	1.142
353.11	0.1203	0.0305	2.000	1.022	377.29	0.7273	0.2350	1.076	1.143
353.89	0.1530	0.0373	1.863	1.025	381.00	0.7688	0.2713	1.041	1.140
354.53	0.1877	0.0442	1.757	1.036	383.31	0.7903	0.2971	1.029	1.137
355.28	0.2264	0.0510	1.635	1.051	387.03	0.8254	0.3439	1.014	1.143
356.25	0.2652	0.0592	1.561	1.059	391.01	0.8558	0.3942	0.991	1.140
357.55	0.3156	0.0697	1.471	1.073	395.00	0.8828	0.4479	0.967	1.144
358.94	0.3590	0.0804	1.417	1.077	401.05	0.9173	0.5424	0.943	1.143
361.35	0.4255	0.0992	1.351	1.081	405.73	0.9409	0.6321	0.938	1.140
365.50	0.5316	0.1333	1.251	1.106	411.70	0.9702	0.7857	0.959	1.137
			D.,+	ul Butanasta	(1) \pm Ethenol	(9)			
351 48	0.0188	0.0033	3 001	1 009	364 49	0 4637	0.0591	1 202	1 088
959.97	0.0100	0.0000	2 010	0.007	265 10	0.4007	0.0001	1.252	1 105
004.47	0.0404	0.0004	2.71U 0.100	1.015	966 16	0.4000	0.0017	1.404	1 1 9 1
303.01	0.0940	0.0129	2.193	1.010	300.10	0.0172	0.0009	1.200	1.131
353.35	0.1175	0.0151	2.045	1.026	308.30	0.5705	0.0745	1.140	1.173
354.47	0.1462	0.0190	1.974	1.014	370.09	0.6390	0.0813	1.037	1.305
355.18	0.1696	0.0221	1.922	1.012	372.95	0.6969	0.0926	0.973	1.400
355.93	0.1985	0.0250	1.799	1.018	375.94	0.7349	0.1062	0.948	1.433
357.04	0.2290	0.0297	1.767	1.011	379.51	0.7738	0.1233	0.919	1.474
358.30	0.2762	0.0346	1.623	1.025	384.34	0.8131	0.1518	0.909	1.493
360.07	0.3265	0.0429	1.586	1.025	395.45	0.8729	0.2380	0.915	1.437
360.15	0.3472	0.0433	1.500	1.054	400.80	0.8916	0.2853	0.906	1.369
361.30	0.3753	0.0475	1.453	1.053	414.45	0.9374	0.4521	0.907	1.291
363.04	0.4218	0.0539	1.369	1.064	425.50	0.9657	0.6327	0.907	1.228

(1976) was used to correlate temperature and the mole fractions for the liquid and vapor phases, such that

$$T = \sum x_1 T^{\circ}_{i,b} + Q \tag{5}$$

where Q is defined as in eq 4 and $T^{\circ}_{i,b}$ is the boiling temperature of pure component *i* at the working pressure.

Table 7 lists the values of the coefficients in eq 4 with the corresponding standard deviations, s(Q), for the respective correlations.

Figures 4 and 5 plot the experimental values and the fitted curves for the different systems studied. Figure 6 compares the data in Table 6 with the literature values for the system butyl ethanoate + ethanol. The test by Fredenslund et al. (1977) applied to the VLE data from the literature in Figure 6 showed that in all cases the data are not consistent. The values presented here differed significantly from the values reported by Beregovykh et al. (Uch. Zap. Mosk. Inst. Tonkoi Khim. Technol. 1971, 1, 38); however, they displayed rather good agreement with the values reported by Shono and Kanazawa (Kogyo Kagaku Zasshi 1969, 72, 815). With respect to our previous values (Ortega et al., 1987) the main difference

Table 7. Coefficients A_i and k in Eq 4 and Standard Deviations, s(Q), Obtained by Correlating the Different Functions

function	k	A_0	A_1	A_2	A_3	s(Q)				
Butyl Methanoate (1) + Ethanol (2)										
$y_1 - x_1 \operatorname{vs} x_1$	0.928	0.444	-5.630	10.578	-9.192	0.005				
$T \operatorname{vs} x_1$	1.019	-39.160	28.113	-89.288		0.38				
$T \operatorname{vs} y_1$	0.200	-26.464	-69.046	106.001		0.16				
	Bu	ıtyl Ethan	oate(1) +	Ethanol (2)						
$y_1 - x_1 \operatorname{vs} x_1$	1.635	-0.293	-3.524	5.199	-7.047	0.001				
$T \operatorname{vs} x_1$	1.290	-41.792	3.595	-111.371		0.17				
$T \operatorname{vs} y_1$	0.213	-45.451	41.616	151.404	-126.463	0.08				
	Bu	ityl Propai	noate (1) H	- Ethanol (2)						
$y_1 - x_1 \operatorname{vs} x_1$	3.299	-0.729	-3.276	0.484	-4.242	0.002				
$T \operatorname{vs} x_1$	1.292	-59.583	-2.525	-117.750		0.18				
T vs y_1	0.148	-58.741	310.908	-208.455		0.13				
	Βı	ıtyl Butan	oate(1) +	Ethanol (2)						
$y_1 + x_1 \operatorname{vs} x_1$	5.634	-0.879	-4.600	-7.662		0.001				
$T \operatorname{vs} x_1$	1.285	-84.869	90.705	-381.257		0.57				
$T \operatorname{vs} y_1$	0.159	-24.085	994.353	-1642.518	747.268	0.19				

appeared in the butyl ester concentration in the vapor phase, due possibly to a bad recirculation of that phase by pressurization problems and hence inestability in the equilibrium conditions.

Of the binary mixtures considered here, only the system butyl methanoate + ethanol presented a minimum azeotrope. The position of the singularity was found by applying the corresponding correlations and solving the equations $y_1 - x_1 = 0$ and $(\partial T/\partial x_1) = 0$ simultaneously. The position of the azeotrope was at $x_1 = y_1 = 0.088$ and T =350.9 K. The interpolated values in the plot of Figure 4 are similar ($x_1 = 0.080$, T = 351.0 K) to the calculated ones.

Prediction of VLE. The ASOG group contribution method (Tochigi et al., 1990) and several versions of the UNIFAC group contribution model (Fredenslund et al., 1975; Larsen et al., 1986; Weidlich and Gmehling, 1987) were used to estimate the VLE values for all the butyl ester (1) + ethanol(2) mixtures. The activity coefficients, γ_i , and vapor phase concentrations, y_1 , were contrasted using eq 2 in all cases. Table 8 presents a quantitative assessment of all the theoretical predictions. The version of the

Figure 4. Representation of $y_1 - x_1$ vs x_1 for the mixtures formed by ethanol (2) with (\bigcirc) butyl methanoate (1), (\square) butyl ethanoate (1), (\triangle) butyl propanoate (1), and (\bigcirc) butyl butanoate (1).

UNIFAC model proposed by Weidlich and Gmehling (1987) proved to be best at predicting the activity coefficients, with a mean error of less than 8% for the four systems, comparable to the result achieved using the ASOG model. The version of the UNIFAC model proposed by Larsen et al. (1986) yielded a mean error of 12.5%; that version of the model was not applicable to the set of mixtures containing butyl methanoate, because no values for the OH/ HCOO interaction were available. The mean errors for the estimates of the γ_i values produced by the version of Fredenslund et al. (1975) depended on the interaction pair considered and ranged from 11% (for OH/COO) to 27% (for CCOH/COOC). Oddly, the interaction pair that yielded the best VLE value estimates, OH/COO, has been recommended for non-alkyl esters (Macedo et al., 1983). In general, in all cases except for the mixture butyl metha-

Table 8. Mean Errors $\bar{e}(\gamma_i)^a$ and Mean Deviation $\delta(y_1)$ Obtained in the Prediction of VLE Using Different Group Contribution Models

	ASOG	12 · · · · ·		UNIFAC			m	odified UNIFA	NC
	OH/COO ^b	OH/HCOO	OH/COOC ^c	COH/COO ^d	CCOH/COOC ^e	OH/COO	OH/COOC ^g	OH/HCOO ^h	OH/COOC ^h
	· •			Butyl Methano	ate (1) + Ethano	l (2)			
$\bar{e}(\gamma_i)$	6.2	8.6		6.1		4.8		3.4	
$\delta(y_1)$	0.010	0.009		0.005		0.007		0.005	
$\delta_{\max}(y_1)$	0.019	-0.031		-0.014		0.015		-0.014	
$(at x_1 =)$	(0.614)	(0.189)		(0.189)		(0.614)		(0.189)	
Butyl Ethanoate (1) + Ethanol (2)									
$\bar{e}(\gamma_i)$	5.7		11.7	12.3	14.5	7.7	5.2		4.7
$\delta(y_1)$	0.008		0.007	0.009	0.011	0.005	0.005		0.010
$\delta_{\max}(y_1)$	-0.017		-0.018	-0.019	-0.019	-0.018	-0.017		-0.017
$(at x_1 =)$	(0.943)		(0.943)	(0.943)	(0.943)	(0.943)	(0.943)		(0.943)
				Butyl Propano	ate (1) + Ethanol	(2)			
$\bar{e}(\gamma_i)$	11.5		28.2	22.7	36.2	17.6	18.1		13.0
$\delta(y_1)$	0.009		0.008	0.007	0.008	0.007	0.009		0.008
$\delta_{\max}(y_1)$	0.019		-0.017	-0.017	0.018	-0.016	-0.023		-0.022
$(at x_1 =)$	(0.643)		(0.941)	(0.941)	(0.226)	(0.941)	(0.941)		(0.941)
				Butyl Butanos	ate (1) + Ethanol	(2)			
$\bar{e}(\gamma_i)$	8.0		22.4	16.1	30.1	12.7	14.3		8.3
$\delta(y_1)$	0.007		0.008	0.007	0.011	0.006	0.006		0.007
$\delta_{\max}(y_1)$	-0.037		-0.037	-0.041	-0.038	-0.037	-0.033		-0.044
$(at x_1 =)$	(0.966)		(0.966)	(0.966)	(0.966)	(0.966)	(0.966)		(0.966)

 ${}^{a}\bar{e}(\gamma_{i}) = \sum_{i=1}^{2} \sum_{N=1}^{N} |\langle \gamma_{i,\exp} - \gamma_{i,\operatorname{cal}} \rangle / \gamma_{i,\exp} | 100/N; \ \delta(y_{1}) = \sum_{N=1}^{N} |y_{1,\exp} - y_{1,\operatorname{cal}}|/N; \ \delta_{\max}(y_{1}) = y_{1,\exp} - y_{1,\operatorname{cal}}, \ ^{b} \text{ Kojima and Tochigi (1979). } ^{c} \text{ Hansen et al. (1991). } ^{d} \text{ Fredenslund et al. (1975). } ^{e} \text{ Fredenslund et al. (1977). } ^{f} \text{ Macedo et al. (1983). } ^{g} \text{ Larsen et al. (1987). } ^{h} \text{ Gmehling et al. (1993). } ^{b} \text{ Constant of } (y_{1}) = y_{1,\exp} - y_{1,\operatorname{cal}} + y_{1,\operatorname{cal}}$

Figure 5. Representation of $T vs x_1$ or y_1 for the mixtures formed by ethanol (2) with (0) butyl methanoate (1), (\Box) butyl ethanoate (1), (\triangle) butyl propanoate (1), and (\bigcirc) and butyl butanoate (1),

Figure 6. Comparison of our experimental data in T vs x_1 or y_1 for the mixture butyl ethanoate (1) + ethanol (2): (\Box) experimental data; (0) Beregovykh et al. (1971); (•) Shono and Kanazawa (1969); (▲) Ortega et al. (1987).

noate + ethanol the major differences in the prediction appear for high butyl ester concentrations.

Literature Cited

Boublick, T.; Fried, V.; Hala, E. The Vapor Pressures of Pure Substances; Elsevier: Amsterdam, 1973. Fredenslund, Aa.; Gmehling, J.; Michelsen, M. L.; Rasmussen, P.;

Prausnitz, J. M. Computerized Design of Multicomponent Distilla-

tion Columns Using the UNIFAC Group Contribution Method For Calculation of Activity Coefficients. Ind. Eng. Chem. Process Des. Dev. 1977, 16, 450-462.

- Fredenslund, Aa.; Gmehling, J.; Rasmussen, P. Vapor-Liquid Equilibria Using UNIFAC. A Group-Contribution Method; Elsevier: Amsterdam, 1977.
- Fredenslund, Aa.; Jones, R. L.; Prausnitz, J. M. Group Contribution Estimation of Activity Coefficients in Nonideal Liquid Mixtures. AIChE J. 1975, 21, 1086-1099. Gmehling, J.; Li, J.; Schiller, M. A Modified UNIFAC Model. 2.
- Present Parameter Matrix and Results for Different Thermodynamic Properties. Ind. Eng. Chem. Res. 1993, 32, 178-193. Gmehling, J.; Onken, U.; Arlt, W. Vapor-Liquid Equilibrium Data
- Collection; Dechema: Frankfurt, 1988; Vol. I, Part 2e, pp 344, 346.
- Hansen, H. K.; Rasmussen, P.; Fredenslund, Aa.; Schiller, M.; Gmehling, J. Vapor-liquid equilibria by UNIFAC group contribution. 5. Revision and Extension. Ind. Eng. Chem. Res. 1991, 30, 2352-2355.
- Larsen, B. L.; Rasmussen, P.; Fredenslund, Aa. Phase Equilibra and Separation Process. A Modified UNIFAC Group Contribution Model for Prediction of Phase Equilibra and Heat of Mixing; Inst. Kem. Lyngby: Lyngby, 1986.
- Larsen, B. L.; Rasmussen, P.; Fredenslund, Aa. A Modified UNIFAC Group-Contribution Model for Prediction of Phase Equilibria and Heats of Mixing. Ind. Eng. Chem. Res. 1987, 26, 2274-2286.
- Macedo, E. A.; Weidlich, U.; Gmehling, J.; Rasmussen, P. Vapor-Liquid Equilibria by UNIFAC Group Contribution. Revision and Extension. 3. Ind. Eng. Chem. Process Des. Dev. 1983, 22, 676-678.
- Ortega, J. Excess molar Volumes of Binary Mixtures of Butyl Formate with Normal Alcohols at 298.15 K. J. Chem. Eng. Data 1985, 30, 465 - 467
- Ortega, J.; Galván, S. Vapor-Liquid Equilibria of Propyl Propanoate with 1-Alkanols at 101.32 kPa of Pressure. J. Chem. Eng. Data 1994, 39, 907-910.
- Ortega, J.; Matos, J. S.; Paz-Andrade, M. I.; Jimenez, E. Excess molar volumes of (ethyl formate or ethyl acetate + an isomer of hexanol) at 298.15 K. J. Chem. Thermodyn. 1985, 17, 1127-1132.
- Ortega, J.; Paz-Andrade, M. I.; Rodríguez-Nuñez, E.; Romani, L. Excess Molar volumes of Butyl Acetate + an n-Alkanol at 298.15 K. Aust. J. Chem. 1985, 38, 1435–1440. Ortega, J.; Peña, J. A.; de Alfonso, C. Isobaric Vapor–Liquid Equilibria
- of Ethyl Acetate + Ethanol Mixtures at 760 \pm 0.5 mmHg. J. Chem. Eng. Ďata **1986**, 31, 339–342.
- Ortega, J.; Peña, J. A.; de Alfonso, C. Vapor-Liquid Equilibrium at 101.32 kPa for the Binary Systems Cn H2n+1 (OH) (n = 2,3,4) -H₃CCO₂C₄H₉ and H₇C₃CO₂C₂H₅ Lat. Am. J. Chem. Eng. Appl. Chem. 1987, 17, 195-205.
- Ortega, J.; Susial, P. Isobaric Vapor-Liquid Equilibria for Binary Systems Composed of Methyl Butanoate with Ethanol and with Propan-1-ol at 114.66 and 127.99 kPa. Can. J. Chem. Eng. 1991, 69, 394-397
- Ortega, J.; Susial, P.; de Alfonso, C. Isobaric Vapor-Liquid Equilibrium of Methyl Butanoate with Ethanol and 1-Propanol Binary Systems. J. Chem. Eng. Data 1990, 35, 216–219.
- Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents, 4th ed.; Wiley-Interscience: New York, 1986.
- Spencer, C. F.; Danner, R. P. J. Improved Equation for Predicting Saturated Liquid Density. J. Chem. Eng. Data 1972, 17, 236-241.
- Tochigi, K.; Tiegs, D.; Gmehling, J.; Kojima, K. Determination of new ASOG parameters. J. Chem. Eng. Jpn. 1990, 23, 453-463.
- TRC-Thermodynamics Tables-NonHydrocarbons. Thermodynamics Research Center, The Texas A&M University System: College Station, TX, 1993.
- Tsonopoulos, C. An Empirical Correlation of Second Virial Coefficients AIChE J. 1974, 20, 263-272.
- Weidlich, U.; Gmehling, J. A. Modified Model. 1. Prediction of VLE, h^E, and γ . Ind. Eng. Chem. Res. **1987**, 26, 1372-1381. Wisniak, J.; Tamir, A. Correlation of the Boiling Points of Mixtures.
- Chem. Eng. Sci. 1976, 31, 631-635,

Received for review February 28, 1995. Revised May 3, 1995. Accepted June 26, 1995. $^{\circ}$ This work has been supported by DGICYT from MEC of Spain (Research Project No. PB92-0559).

JE950051P

* Abstract published in Advance ACS Abstracts, August 1, 1995.